
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22,429444 (1 996) 

ON BREAKING WAVES AND WAWXURRENT INTERACTION IN 
SHALLOW WATER: A 2DH FINITE ELEMENT MODEL 

J. S. A ” E S  DO CARMO AND F. J. SEABRA-SAWS 
M A R ,  Foculdade de Cihcias e Tecnologia. Uniwrsi&de de Coimbm, 3049 Coimbm Codex, hrtugal 

SUMMARY 
Atwo-dunens * ional (horizontal plane) coastal and estuarine region model, capable of predicting the combined 
effects of gravity surface shallow-water waves (shoaling, refraction, diffraction. reflection and brmling). and 
steady currents, is described and numerical results are compared with those obtained experimentally. 
Two series of observations within a wave flume and a combined wave-current facility were developed. In the 

first case, the wave was gcnmted via a hinged paddle located within a deepened section at one end of the channel, 
as, in the second case, the wave propagating with or against the current was generated by a plunger-type 
wavemaker. the re-circulating current was introduced via one passing tank connected to a centrihgal pump. 

Several comparisons for a number of 1D situations and one 2 0  horizontal plane case are presented. 
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1. INTRODUCTION 
Coastal and estuarine region flows are strongly influenced by, among other phenomena like refraction, 
difbction, reflection, etc., complex superposition of non-linear wave-wave and wave-current 
interactions. So, as is widely recognised in the litmture,4” the use of a classical wave model that does 
not take into account wave-current interactions, is considered to be somewhat incomplete. Other 
effects must be also considered, such as those resulting from bottom friction and eventually from the 
wave breaking, the latter being also responsible for producing littoral currents. 

The purpose of this paper is to present an original finite element technique improvement to the 
classical 2Ll (horizontal plane) shallow-water wave models based on the Boussinesq equations to 
introduce the breaking effects and interactions between waves and steady currents. 

At a distance from the surf zone, where the effects of wave breaking are non-existent, the current 
characteristics are relatively well known, or they can be, either through in situ measurement, or a large 
zone modelling of the ocean circulation. Then, a regional or local model based on a more detailed 
geometry and bathymetry is able to provide the current velocity field installed, at a given moment, in 
the coastal region under study. 

The hydrodynamic model presented here, can be used to study the wave propagation and breaIung 
over this steady current velocity field. There is no practical limitation for the definition of current 
velocity, as it may be less than, equal to or greater than the wave orbital velocity. 

2. FORMULATION 

The modified Boussinesq-type equations presented in this paper are deduced from the fundamental 
fluid mechanics equations relating to a threedimensional and quasi-htational flow of a viscous and 
incompressible fluid, written in Euler’s variables. 
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Considering the characteristic quantities a, H and 1, which represent wave amplitude, mean water 
depth and a characteristic length, respectively, the following nondimensional variables can be defined: 

x* = x / l ,  y' = y / l ,  z* = z / H ,  q* = q/a,  <* = <12/H3, 
U U H  V VH wl u* = - ; v + =  wl -- , w * =  

aJb?lH) - ac, a J ( g / H )  = a H J b ? / H )  - aco ' 

where co = &H), t is the time, q is the surface elevation, 5 represents the bathymetry; u, v, w, u, and 
v, are velocity components (the subscript c denotes current), P is the pressure, p is the specific mass of 
the fluid, g is the gravitational acceleration, and 7=, zV, T,,,,, T, and T, are stress tensor components. 
The asterisk is used to denote non-dimensional variables. 

We have chosen a cosrdinate system where Ox and 4, coincide with the ke-surface at rest and Oz 
is positive upward. 

Defining the small non-dimensional quantities c = a / H  and a = H / l ,  which are measures of 
nonlinearity and frequency dispersion, respectively, the new variables u* and V* may be defined: 

Accordingly, the fundamental equations for the fluid motion, the vorticity components and the usual 

Fundamental equations 
kinematic and dynamic boundary conditions are written as follows: 

au* av* aw* -+-+-=o, ibC* ?v* iP 

au* au* au* au* + c 2 a V *  - + €2a w* - €U-+€2aU*- 
at* ax* ay* a2+ 

av* av* av* av* €o-+€2UU*-+€2aV*- +€2aW*- 
at* ax* ay* &* 

ap* h; a ~ *  wF 
=-U-+U-+ff>+- ,  

ay* w ay* iP 

aw* aw* aw* 
at* ax* ay+ &* 

€2- + 2 2 U * a w +  + 22v*- + 2202w*- 

(3) 
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Vorticity components 
a w *  av*  au* aw* %*=$--- *---$- 

av* au* Q* = - - - ax* @ * '  

+* & * '  4 -  &* ax* ' 

Boundary conditions 
At thefiee su$ice, z* = q*(x*,y+, P) 

a* a* a* -+€U*--+CV+-= w*, 
at* ax* ?Y* 

av* COT;. - + .r*, = T%€?f) ,  av* 
ay* 

-€O?& - - ax* 
atl* a* 
?Y* yl ax* car; - + % = ~sf.(cq+), -CUT* - - 

a* ** P* + €Ur+,- + €0%- - T; = 0, ax* @* 
at the bottom, z* = -1 + d<* (x* ,y * ,  t*) 

(7) 

(9) 

By integrating over the water depth the equations (1H4), taking into account the boundary 
conditions (6H12), the three-dimensional problem of the horizontal propagation of waves with a 
current can be reduced to a two-dimensional one. Without other restrictions, the continuity equation is 
obtained: 

(13) 
a c? a a 

?y* 
ar* (q* - <*) + ibr+[( 1 - $(* + q*)U*J + - [( 1 - 025' + cq+)Y*] = 0. 

Accepting the basic assumptions of the Boussinesq equations: 
2 << 1, U, = c / d  x 1, = @a4) and = O(a4>, 

where U, is the Ursell number, the integration of the fundamental momentum equations (2) and (3) 
leads to the following system: 

au* a u *  a u *  q* (1 -aZ<*)2 
-+dJ*-+N*-+--$ 
at* ax* ;jt* ax* 3 

-0 
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av* a v *  av* a* (1 -a2(*) du* d V* 
- + €U* - + €V* - + - - 2 
at* ibr* ?Y* ?Y* 3 (&*+*at* + w) 

0 5  

where R = Hco/v is the Reynolds number, v being the kinematic viscosity; T;(- 1 + d(*) and c(q*) 
represents non-dimensional stresses per unit mass, at the bottom and at the surface respectively. 

Although mathematically irrelevant at this order of approximation, some terms involving the bottom 
variable ( were left, since they were found to be important for the simulations over irregular 
bathymetries. 

In dimensional variables, a complete set of modified Boussinesq equations, here extended in order to 
take these factors into account: (i) a time-dependent bathymetry; (ii) the friction at the bottom; (iii) a 
steady current; and (iv) breaking wave conditions, may be written as follows: 

ah a(hU) a(hV) +--0, -+- + at ax 

au au au a ( ~ - 5 ) ~  d u  d v  
- + u - + v - + g - -  at h a y a x  3 (i3%+Z&) 

a2u a2v a2u a2v 

av av av 3 ( ~ - 5 ) ' (  du I d v )  
-+u-+v-+g---- - 
at a x + +  3 hayat v a t  

a2u a2v a2u a2v 
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2.1. Bottom shear stress pammetrization 

current (u,, v,) and the waves (u, v): 
A general expression for the 7b(<)/h term may be written as an integral approach due to both the 

where I v I = J(U2 + V 2 )  and G = (U, V). 

suggested by Jonsson: 
For the wavecurrent friction factor fw, in Tolman" reference is made to the following approach 

in which fw is determined ignoring the current andfc is determined ignoring the waves; CW represents 
the maximum orbital velocity of the wave. 

As we look for a time dependent definition of the friction factorLw, to be used in any conditions of 
wave, current and wave-current interaction, the following new local expression for the parameter 8 is 
proposed, 

which leads to: 
8 = I v, 1 / 1  v w  I 

I v, I 
I v w  I + I vc I fw + A* I v w  I 

I v, I + I vc I f, = 

where I v, I = J(d +3)  and I v, I = J(4 +$). 
In expression (21), both friction factors vb, andf,) must incorporate wave and current influences. 

With an improvement of the factor fw given by Temperville and Thanh" for the wave only,, and the 
factorh given by van Rijn,9 the final form of these friction factors is: 

f, = 0.00278 exp 
I v, I + I v, I 

f, = O.O6[log,, 

where 0 depends on the angle 4wc between the current and the direction of the wave propagation (with 
4, = 0, 0 = 1.0); A z -0.22; 6 = I V, IT/2z, with i 2 kN; kN % 2.5d5, is the equivalent Nikur- 
adse rugosity and k, 3dw exp[l v, 14/(1 v, I + I vc I)] is a current-related bed-roughness co- 
efficient. 

2.2. Parametrization of the wave breakingpmcess 

Considering a set of time-dependent mild-slope equations and assuming purely progressive long 
waves over a uniformly sloping beach, with a constant ratio of wave height to water depth. Watanabe 
and Dibajnia" deduced the following expression for the surfice stress per unit mass: 

with 
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where tan B is a representative bottom slope around the breaking point and ~ ~ ~ 2 . 5 .  They also 
deduced an expression for a general bottom topography, which allows us to compute wave decay and 
recovery after breaking, but does not take into account the momentum exchange due to turbulence. 

Based on this pioneering work, we suggest a formulation given by: 
iPG a2G -- ?,(tl) 

h 
with the local i$ components approximated by: 

being 

or by 

with 

vB represents a critical velocity amplitude for the wave breaking process; Gf represents the ‘stable’ 
velocity of the wave after each breaking process. aB < 7.5; r FZ 0.40; y ,  % 0.25 and y2 2 1.0 are 
empirical coefficients. The subscript B indicates value at the breaking point. 

3. NUMERICAL METHOD 

To obtain a numerical solution of the equation system (1 6 x 1  8), the finite element method for spatial 
discretization of the partial differential equations is applied. 

3. I .  Numerical procedure 

Following Antunes do Carmo et al.,’ the (V, V) derivatives in time and third spatial derivatives are 
grouped in two equations; this means that an equivalent system of five equations is solved instead of 
the original ( 1  6 H  1 8). Considering a time invariable bathymetry, the final equation system up to the 
order a3 takes the following form: 

ah aU ah i3V ah 
- + h - + U - + h - +  V-=O,  a t a x a x : a y ; 3 ,  

a r a r a r  av au W + O  
at ax ;3, ax ?Y 
- + u c - + v c - = ( ( u c -  u)-+(vc- v ) - - g -  ax 
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- a s a s a s  av av W + O  
at + - + vc - = (uc - u) - + (vc - v) - - g- a x *  ax ay ay 

We also assumed that rZy = qd), which strictly corresponds to a limitation of the numerical 
method to weakly vertical rotational flows. However, as we will see later, even in severe conditions 
(e.g. behind obstacles) the model seems to behave well. This assumption is not essential for the 
development of the method and it is used here in order to reduce the computational effort. 

As the values of variables h, U, C: r and s are known at time t, we can use a numerical procedure 
based on the following steps (with 8 x 0.5) to compute the corresponding values at time t + Ar. 

1. The equation (25) allows us to predict the values of variable h(h;+&), considering the known 
values of h, U and Vat time t in the whole domain. 

2. Equations (26) and (27) make it possible to predict the values of variables r ( P A f )  and s($+&), 
taking into account the values of U', V', r', s' and = (1 - 0)h' + Oh;+&, known for the 
whole domain. 

3. Solutions of equations (28) and (29) give us the values of the mean-averaged velocity 
components U and V ( Uf+& and PA'), taking into account the predicted values of r and s(rJdAf 
and A$+& respectively). 

4. Equation (25) allows us to compute the depth h at time t + At (values of PA'), considering the 
values of variables h', U'+eAr = (1 - 8)U' + Out+& and Peh = (1 - O)Vf + 8V+& known 
for the whole domain. 

5. Equations (26) and (27) allows us to compute the values of variables r and s at time t + At (values 
of #+& and s'"'), taking into account the values f,s',PeAf = (1 - 8)h' +8hf+&, 
U'+eAr = (1 - 0)U' + and Pe& = (1 - O)Yf + OVf+Ar known for the whole domain. 

Similar schemes can be found in Seabra-Santos et al.' and Abreu and Seabra-Santos.' 

3.2. Development of the method 

h, U, C: r or s, and yet ucr v, and ( or (H - t) approximated within each element by: 
If A' is a generic element, considering the generic function p (here representing any of the variables 

n 
p %j = C Npi, 

i=l 

wherc p i  is the value of the function p at the node i of the element A', n is the number of nodes of the 
element and Ni is the interpolation (shape) function N corresponding to the i-node of the element A'. 
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As the assumed functional form of the variables (generic j) are only approximate, the substitution of 
i in any equation (J) (J varying between 25 to 29) generates a residual RJ. According to the weighted 
residual technique, minimization requires the 'orthogonality' of the residual RJ to a set of weighting 
functions K., i.e. 

Different forms of the weighting functions may be utilized. For instance, the Petrov-Galerkin 
procedure is here utilized to achieve solutions for the unknowns h, r and s (equations (25H27)). The 
general form of the weighting functions applied to these equations is defined as 

where the /I,, and /Iv, coefficients are functions of: (i) the local velocities U and V; (ii) the ratio of the 
wave amplitude to the water depth; and (iii) the element length. 

With W, = N, another weighted residual technique is obtained, known as the Galerkin procedure. 
Solutions for the unknowns U and Y (equations (28) and (29)) are achieved through minimisation of 
their residuals (residuals Rzs and RZ9, respectively) utilizing this technique. 
To illustrate this procedure, a complete solution of equation (28) is presented here in detail. 
Introducing in equation (28) the approximated values given by (30), the following residual R28 is 

obtained: 

According to Galerkin's procedure, after using integration by parts (or Green's theorem) to reduce 
the second derivatives, the Rzs error minimization leads to the following equation (up to the order a3): 

The boundary integral presented in the right-hand side of equation (34) may be subdivided into two 
parts: 

where represents the element sides within the domain, with the corresponding integral null because 
the resulting element contributions are equal, but with opposite signals, and Tc, represents the element 
sides coincident with the boundary domain. 
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Accordingly, an equivalent form of equation (34), taking into account (31), may be written as 
follows: 

with p ,  q = 1,. . . , n, where n, is the number of nodes of the corresponding element side coincident 
with the boundary domain. 

These equations may be written in matrix form as follows: 

L41IUJ = IB). 
where matrix A and vector B elements are given by 

6, = IA, N l c  T r j  dAe + fc Np Nq r;) d c ,  
j =  1 

i , j =  1 ,..., n a n d p , q =  1 ,..., n,. 

rules must be fblfilled for its generation. 
A suitable grid is normally crucial to the success of a finite element model. In our case, the following 

(a) Element side lower than the local depth. 
(b) Minimum of 20 to 25 elements per wave length. 
(c) Courant number always lower than one in the whole domain. 

Several regular and highly irregular quadrilateral grids that fulfilled the above-mentioned rules have 
been used up to the present and the model seems to behave well in all tested cases. 

3.3. Boundary conditions 

Equations (28) and (29) are of the elliptic type, so imposition of natural and/or essential boundary 
conditions is necessary in all boundary nodes of the domain. 

Natural boundary conditions for the U and/or Y variables (lcnown values of the a v i a n  and/or 
aV/& quantities) are introduced h m  the boundary integral presented in the B vector of equation 
system (36) and/or equivalent for equation (29). 

The essential boundary conditions of the type p =Pb may be introduced in the final system (equation 
system (36) for the I/ variable and/or equivalent for V), after adding up the contributions from all 
elements and all sides with natural boundary conditions (values of @/an # 0), by eliminating the rows 
corresponding to the prescribed unknowns and inserting the contributions of those prescribed 
unknowns on the right-hand side. 

On the incident side boundary, the waves are expressed as the superposition of the incident wave 
(any complex signal) and the outgoing wave. 

Considering an incident wave in the xdirection, for the problems discussed here this condition takes 
the following form 
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where vI represents the velocity of the incident wave (sinusoidal, cnoidal, solitary, irregular), and the 
angle a is the outgoing wave direction measured from the x-axis. The outgoing component of the wave 
vo is expressed as 

V o = &  (38) 

where q is the predicted surface elevation. 
On the opposite open boundary (onshore boundary normal to x-axis), the wave velocity is calculated 

(39) 

by 
U = u,(l + q /h)  + voI cosal. 

In both open boundary cases, a zero natural boundary condition for the V-komponent of the flow 
velocity is considered here, i.e. 

avian = 0. (40) 
For a total reflective boundary, if an angle B is defined as the angle formed between the x-axis and 

the boundary normal, we have the following relation between U and E 

ucos/.?+ vsin/.?= 0. (41) 

4. EXPERIMENTAL VERSUS COMPUTATIONAL TESTS 
Several sets of experiments have been performed by the authors in the Laboratory of Hydraulics of the 
University of Coimbra, in order to test the mathematical model, as well as numerical results of wave- 
current interactions, breaking waves over a slope and other characteristic properties of shallow-water, 
like shoaling, reflexion and diffraction. 

In the next sections we will briefly present three of these experiments. 

4.1. Wme-cumt intemctions 

Within a 4 m long and 0-6 m wide channel, a surface flow is established with 6.9 cm depth and a 
mean horizontal velocity of 8.5 cm/s. 

A plunging piston situated at the upstream region centred at x = 0.45 m generates a 1 s wave period. 
At each end of the channel, two wave absorbers virtually guarantee non-reflected waves. Five surface 
gauges are located at different positions. The signal of the gauge situated at x = 1.1 m gives the input 
boundary condition for running the numerical model. 

A classical pattern for shallow water non-linear waves (A/H* 0.3) may be seen (Figure l), where 
decomposition takes place and the resulting wave train interacts with the current. The agreement 
between the two results may be considered generally good, for both wave amplitude and phase. 

However, it is important to note that the computed and measured results at the signal gauge present 
slight difftrences. These can be explained as follows: (i) the incident boundary condition is expressed 
as the linear superposition of the measured current and approximated wave velocity calculated by an 
equation similar to (38), in which h and q are the measured quantities. However, the computed free- 
surface elevations represent the final non-linear response of the model at each time step; (ii) in all 
numerical computations we assumed totally non-reflective incident and opposite boundaries. In reality, 
this is not absolutely true and the free-surface elevations at these boundaries are consequently 
overpredicted. 
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Results h m  another experiment are presented in Figure 2, with the wave generator situated now at 
the downstream region centred at x = 3.7 m. A 1 s wave period is propagating against a 6 cm/s current 
over a 6.6 cm depth. The gauge located at x = 3.2 m gives the input signal for nmning the numerical 
model. 

Important non-linear effects are also present in this experiment @/If= 0.26). A slight loss in phase 
accuracy and wave height is shown; however, the results may be considered globally good. 

4.2. Breaking waves over a slope 

Here we consider the propagation and breaking of a wave over a varying depth rigid beach in a 
7.5 m long by 0.3 m wide rectangular channel. 

The bottom is formed by two horizontal platforms of 1.13 and 1 -60 m length, with elevations of 0 m 
and0.2 mrespectively,locatedateachendofthechannel(Om<x < 1-13 mand5.40 m c x  < 7 m) 
and joined by a slope of 4.27 m length (1.13 m < x  < 5.40 m). The upstream undisturbed depth is 
24.9 ~ m .  
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Figure 2. Free surface elevations with time for wave-current interactions: waves propagating against the current. Ho = 6.6 an; 
T= I S; U, = -6 m / s .  ~ , Experimental data; - - - - - -, numerical results 

A 1.72 s wave period is generated which corresponds to a wavelength of 2.53 m (Wr e 0.62, where k 
is the wavenumber), with an amplitude of 2.2 cm. The signal collected by the first proble (x = 0) is 
used as an input boundary condition for modelling the shoaling, decomposition and breaking of the 
wave over the slope. 

Although the experimental conditions are very severe and theoretically outside the application range 
of thls model (slope of 4-7%, breaking occurring over the downstream horizontal pla$orm between 
gauge 1 and gauge 3, very high reduced amplitude, intermediate depth water conditions in the 
upstream region), the results presented in Figure 3 are in good agreement with the experimental data. 

It is important to note that the classical Boussinesq wave model, which does not include breaking 
conditions, gives in this example, e.g. at gauge 3, water elevations up to 29 cm ( A / H e O . 8 4 )  which 
represents an error of about 8O%, and overestimates decomposition. 

4.3. Wave-current difiction by a vertical cylinder 

Numerical three-dimensional results are compared with those obtained experimentally in the first 
facility described above (a 4 m long and 0.6 m wide channel) with the centre of a vertical circular 
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FiguFc 3. Breaking waves over a slop of 4.7%: mC-surfacc e l d o a s  with time from computation and experimental 
meaSumnent Ho= 24.9 cm; HI =4.9 cm; Ao= 2.2 cm; T= 1.72 s (h *0.62). -, Experimmtal data; - - - - - -, 
numerical 

mdts 

Figun 4. Plan view and installed depth gauges for a wavbcumnt difEaction by a v d c a l  circular cylinder 
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-7 

Figure 5. Wavo-cumnt difFradon by a vertical cylinder: computational mesh 

Figure 6. Wavcxurrent diffraction by a vertical cylinder: three-dimensional perspective view of free-surface elevation, in time 
sequence. The closest wall of thc channel was removed for better visualimtion 



ON BREAKING WAVES 443 

cylinder, 20 cm in diameter, located at x = 2.3 m and y = 0.3 m. The cylinder pierces the fiee surface. 
Seven gauges are located at different positions (Figure 4). 

A surface flow is established, for an imposed mean horizontal velocity of 8.5 cm/s at the first 
section of the channel. At the signal probe (x = 1.1 m), the mean water depth remains about 7 cm. 

A plunging piston centred at x = 0.45 m generates a 1 s wave period. The probe located at x = 1.1 m 
gives the input boundary condition for the numerical model. 

The computational mesh used in this simulation is composed by four-node elements. It is presented 
in Figure 5. 

Numerical results are shown in Figure 6, representing the domain at times 
t l  = 2.5 s, t2 = 5 s, t, = 7.5 s, r4 = 10 s, ts = 12.5 s and r6 = 15 s, and where the closest wall of 
the channel was removed for better visualization. 

Figure 7 shows the comparison between the computed and measured results. Good agreement is 
obtained. 
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F i g m  7. Wavtymmnt diffraction by a vertical cylinder fm-surface elevations with time from computation and experimental 
measurement H =7 cm; T= 1 s; iic = 8.5 cm/s. Gauges positions in meters: gauge1 (1.82, 0.30). gauge2 (2.18,0.30), gauge3 
(2.13. 0.16), gauge4 (2.30, 0.18). gauge5 (2.70.0.30). gauge6 (3.05,0.30). -, kpcrimmtal datn; - - - - - - , numerical 

d r s  
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5 .  CONCLUSIONS 

It seems clear fiom comparisons that the model presented is capable of reproducing the flow 
characteristics for the proposed examples. 
Moreover, its range of application includes intermediate water conditions (values of Rh < 1.0). 
It should be also pointed out that it may be used in any geometry, with an irregular bathymetry, and 

under complicated boundary conditions, without significant additional computational effort. 
Furthermore, as it uses four-node elements, the method is not very costly in time (about 25 s of CPU 

in a Digital Alpha 3000/500 AXP computer with open VMS AXP vl.5 per time step per loo00 
elements), so a large area of thousands of elements may realistically be treated. 

Therefore, we think that it is a valuable tool for studying the surfhce evolution of coastal and 
estuarine zones as well as for providing accurate potential flow parameters for further developments 
concerning the bottom boundary layer and sediment transport. 
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